FEM Homework Report

Yue Wu*

September 7, 2022

1 Introduction

Make a program to solve the two-point boundary value problem:

$$\begin{cases} -u'' = f, & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$
(1)

Use an equidistant mesh and a piecewise linear polynomial space V_h as the finite element space. Use $f(x) = -2\cos x + (x-1)\sin x$, $u(x) = (x-1)\sin x$ to test your program, and compute the following errors:

$$||u - u_h||_{L^2[0,1]}, \quad ||u - u_h||_{H^1[0,1]}$$
 (2)

2 Method

We use the following equidistant mesh:

$$x_j = jh, j = 0, 1, \cdots, N+1, \quad h = \frac{1}{N+1}, \quad I_j = [x_j, x_{j+1}]$$
 (3)

and we use the following finite element space:

$$V_h = \left\{ v \in C[0,1] \middle| v|_{I_j} \in \mathcal{P}^1(I_j), j = 1, \cdots, N+1, \ v(0) = v(1) = 0 \right\}$$
(4)

The Galerkin approximation to the problem using approximation space V_h is given by the following:

find
$$u_h \in V_h$$
, such that:
 $\forall v_h \in V_h, \ \left(u'_h, v'_h\right) = (f, v_h)$
(5)

For every function $v_h \in V_h$, we use the nodal representation as the following:

$$v_h(x) = \sum_{j=1}^{N} v_h(x_j)\phi_j(x)$$
 (6)

^{*}School of the Gifted Young, University of Science and Technology of China, Hefei, Anhui, China. E-mail: pilotjohnwu@mail.ustc.edu.cn

then the discrete Galerkin system becomes:

$$Au = f \tag{7}$$

where:

$$\boldsymbol{A} = \left(\left(\phi'_i, \phi'_j \right) \right)_{N \times N} \tag{8}$$

$$\boldsymbol{u} = (u_h(x_i))_{N \times 1} \tag{9}$$

$$\boldsymbol{f} = \left((f, \phi_i) \right)_{N \times 1} \tag{10}$$

To approximate integrals of non-polynomial functions in computing the righthand-side term f, we apply the 2-point Gauss-Legendre quadrature rule in both cases.

To approximate integrals of non-polynomial functions in computing the errors, we apply the 2-point Gauss-Legendre quadrature rule and the 2-point Gauss-Lobatto quadrature rule respectively.

Here, we give the 2-point Gauss-Legendre quadrature rule and the 2-point Gauss-Lobatto quadrature rule:

$$\int_{-1}^{1} f(x) dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$
(11)

$$\int_{-1}^{1} f(x) dx \approx f(-1) + f(1)$$
(12)

3 Results

We use N = 10, 20, 40, 80 DOFs for computation. By running the scripts in main.m, the outputs from the matlab program we coded are given as following:

N	L^2 error	order	H^1 error	order
10	1.2857e-03	-	4.9020e-02	-
20	3.5276e-04	2.0000	2.5666e-02	1.0007
40	9.2545e-05	2.0000	1.3144e-02	1.0002
80	2.3711e-05	2.0000	6.6532 e- 03	1.0000

Table 1: Table of error and order under different norms using Gauss-Legendre rule

N	L^2 error	order	H^1 error	order
10	2.3122e-08	-	8.4844e-02	-
20	1.7400e-09	4.0006	4.4446e-02	0.9999
40	1.1974e-10	4.0002	2.2766e-02	1.0000
80	7.8678e-12	3.9986	1.1523e-02	1.0000

Table 2: Table of error and order under different norms using Gauss-Lobatto rule

4 Discussion

From this experiment, we verified the theoretical 2-nd order convergence under the L^2 norm and 1-st order convergence under the H^1 norm numerically. In the algorithm, we used the 2-point Gauss-Legendre quadrature rule to approximate integration of non-polynomial functions in the right-hand-side. This does not cause the convergence order to degenerate since the quadrature is 4-th order accurate.

There is an interesting fact that from the error table resulting from different quadrature rules, we observe significantly different convergence rates in the L^2 norm. This is a typical phenomenon of the superconvergence theory of finite element methods: the numerical solution approximates the mathematical solution better at some specific points (superconvergent point) than anywhere else. In fact, the 4-th order L^2 convergence here verifies the superconvergence at cell boundaries instead of the true L^2 convergence.