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1 Introduction
Make a program to solve the two-point boundary value problem:{

−u′′ = f, 0 < x < 1

u(0) = u(1) = 0
(1)

Use an equidistant mesh and a piecewise quadratic polynomial space Vh as the finite
element space. Use f(x) = −2 cosx + (x − 1) sinx, u(x) = (x − 1) sinx to test your
program, and compute the following errors:

∥u− uh∥L2[0,1] , ∥u− uh∥H1[0,1] (2)

2 Method
2.1 The Galerkin approximation
We use the following equidistant mesh:

xj = jh, j = 0, 1, · · · , N, Ij = [xj−1, xj ], hj = xj − xj−1, h = max
j
hj (3)

and we use the following finite element space:

Vh =
{
v ∈ C[0, 1]

∣∣v|Ij ∈ P2(Ij), j = 1, · · · , N, v(0) = v(1) = 0
}

(4)

The Galerkin approximation to the problem using approximation space Vh is given
by the following:

find uh ∈ Vh, such that:
∀vh ∈ Vh,

(
u′h, v

′
h

)
= (f, vh)

(5)

To approximate integrals of non-polynomial functions in computing the right-
hand-side term f , we apply the 3-point Gauss-Lobatto quadrature rule in both cases.
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To approximate integrals of non-polynomial functions in computing the errors,
we apply the 3-point Gauss-Legendre quadrature rule and the 3-point Gauss-Lobatto
quadrature rule respectively.

Here, we give the 3-point Gauss-Legendre quadrature rule and the 3-point Gauss-
Lobatto quadrature rule:∫ 1

−1
f(x)dx ≈ 5

9
f(−

√
3

5
) +

8

9
f(0) +

5

9
f(

√
3

5
) (6)∫ 1

−1
f(x)dx ≈ 1

3
f(−1) +

4

3
f(0) +

1

3
f(1) (7)

2.2 The global basis and matrix
The global (nodal) basis for the finite element space Vh is given by:

ϕ0j (x) =


2
h2
j
(x− xj− 1

2
)(x− xj−1), x ∈ Ij

2
h2
j+1

(x− xj+ 1
2
)(x− xj+1), x ∈ Ij+1

0, otherwise

, j = 1, · · · , N − 1 (8a)

ϕ1j (x) =

{
− 4

h2
j
(x− xj−1)(x− xj), x ∈ Ij

0, otherwise
, j = 1, · · · , N (8b)

where we use xj− 1
2
=

xj−1+xj

2 to denote the element center.
We arrange these basis in the following way:

ϕ2k−1(x) = ϕ1k(x) k = 1, · · · , N (9a)
ϕ2k(x) = ϕ0k(x), k = 1, · · · , N − 1 (9b)

thus each function vh ∈ Vh has the following nodal representation:

vh(x) =

2N−1∑
k=1

vh(x k
2
)ϕk(x) (10)

In this manner, the global mass matrix is A =
((
ϕ′i, ϕ

′
j

))
(2N−1)×(2N−1)

with non-zero
entries:

A2k−1,2k−1 =
16
3 h

−1
k , k = 1, · · · , N (11a)

A2k,2k = 7
3

(
h−1
k + h−1

k+1

)
, k = 1, · · · , N − 1 (11b)

A2k,2k−1 = A2k−1,2k = −8
3h

−1
k , k = 1, · · · , N − 1 (11c)

A2k,2k+1 = A2k+1,2k = −8
3h

−1
k+1, k = 1, · · · , N − 1 (11d)

A2k,2k+2 = A2k+2,2k = 1
3h

−1
k+1, k = 1, · · · , N − 2 (11e)
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2.3 The local basis and matrix
The local (nodal) shape functions within a reference element I = [0, 1] are:

ψ(0)(x) = 2(x− 1

2
)(x− 1) (12a)

ψ(1)(x) = −4x(x− 1) (12b)

ψ(2)(x) = 2x(x− 1

2
) (12c)

The local basis functions for an element Ij are:

ψ
(k)
j = ψ(k)(ξj(x)), k = 0, 1, 2, j = 1, · · · , N (13)

with the affine transformation function

ξj(x) =
x− xj−1

hj
(14)

The local mass matrix Kj ∈ R(2N−1)×(2N−1) is:

Kj = diag

0(2j−3), h
−1
j

 7
3 −8

3
1
3

−8
3

16
3 −8

3
1
3 −8

3
7
3

 ,02N−2j−1

 , j = 1, · · · , N (15)

and the local right-hand-side Fj ∈ R2N−1 is:

Fj =


02j−3∫

Ij
f(x)ψ0

j (x)dx∫
Ij
f(x)ψ1

j (x)dx∫
Ij
f(x)ψ2

j (x)dx

02N−2j−1

 , j = 1, · · · , N (16)

3 Results
We use N = 10, 20, 40, 80 equidistant elements for computation. By running the scripts
in main.m, the outputs from the matlab program we coded are given as following:

N L2 error order H1 error order
10 6.7256e-06 - 5.1847e-04 -
20 8.3827e-07 3.0042 1.2971e-04 1.9990
40 1.0471e-07 3.0010 3.2433e-05 1.9997
80 1.3086e-08 3.0003 8.1085e-06 1.9999

Table 1: Table of error and order using Gauss-Legendre rule
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N L2 error order H1 error order
10 7.2248e-07 - 8.1970e-04 -
20 4.5126e-08 4.0009 2.0508e-04 1.9989
40 2.8199e-09 4.0002 5.1280e-05 1.9997
80 1.7620e-10 4.0004 1.2821e-05 1.9999

Table 2: Table of error and order using Gauss-Lobatto rule

4 Discussion
From this experiement, we verified the theoretical 3-nd order convergence under the L2

norm and 2-st order convergence under the H1 norm for piecewise quadratic conforming
FEM numerically. In the algorithm, we used the 3-point Gauss-Lobatto quadrature rule
to approximate integration of non-polynomial functions in the right-hand-side. This
does not cause the convergence order to degenerate since the quadrature is 4-th order
accurate.

There is an interesting fact that from the error table resulting from different quadra-
ture rules, we observe different convergence rates in the L2 norm. This is a typical FEM
superconvergence phenomenon. Although the convergence rates of the H1 error are the
same, we obvserve bigger error when using the Gauss-Lobatto quadrature rule. The
reason may be that the 3-point Lobatto rule is less accurate that the 3-point Legendre
rule.
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