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1 Introduction

Make a program to solve the two-point boundary value problem with purely Neumann
boundary condition:

{—u”:f, 0<zx<l1 (1)

W (0)=u'(1)=0

Use an equidistant mesh and a piecewise linear polynomial space V}, as the finite
element space. Use f(x) = —1222 4+ 122 — 2, u(x) = 2%(z — 1)? to test your program,
and compute the following errors:

l|u — UhHL2[0,1] oo lu— UhHHl[o,l] (2)

2 Method

2.1 The Galerkin approximation

We use the following equidistant mesh:

zj=jh,j=0,1,--- N, I; =[xj1,75], hj=1zj—zj1, hszxhj (3)

and we use the following finite element space:
Vi ={vecCo1|l, eP(l),j=1,- ,N} (4)

The Galerkin approximation to the problem using approximation space V}, is given
by the following;:

find up € V}, such that:
Vup € Vi, (s vh) = (f,0n) + ' (1)o(1) — o' (0)v(0) = (f,va)
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Since the boundary condition is purely Neumann, it is obvious that the solution space is
an affine space. Using the Fredholm theory for second-order elliptic equations, we need
to modify the problem into the following one with an Lagrange multiplier:

find up € V}, and A € R such that:
(u;p /U;z) + ()‘7 Uh) = (f? Uh) (6)

VvaVh, {(lu) c
s Up) =

To approximate integrals of non-polynomial functions in computing the right-
hand-side term f, we apply the 2-point Gauss-Lobatto quadrature rule in both cases.

To approximate integrals of non-polynomial functions in computing the errors,
we apply the 2-point Gauss-Legendre quadrature rule and the 2-point Gauss-Lobatto
quadrature rule respectively.

Here, we give the 2-point Gauss-Legendre quadrature rule and the 3-point Gauss-
Lobatto quadrature rule:

1
/ e ~ F—y 4 () (7)

1
VAR
1
/_ e~ (=) + £(1) (8)

2.2 The global basis and matrix

The global (nodal) basis for the finite element space V}, is given by:

Zo—T I
_ ) TR TEL
= 9a
Po() {0, otherwise (9a)
T e
P _
¢]($): hjj+l7 $€Ij+1 , j=1,---,N—1 (gb)
0, otherwise
T-TN-1
)Ty 0 T € In
= 9¢c
() {07 otherwise (9¢)

Using global basis, each function v, € V}, has the following nodal representation:

2N—1
vn(z) = ) un(2 k)P () (10)
k=1
In this manner, the global stiffness matrix is A = (( i qﬁ;))(N (1) with entries
+1)x(N+

Ai,j = < ;_1a¢;’—1)5 Z)j: ]-7 7N+1



Lemma 1. The matriz A is symmetric and positive semi-definite. The null space of A
is precisely spanned by 1 (the vector with unit entries).

Proof. Since we are using nodal representations, it is straight-forward to check that
A1l = 0. We next show that the null space ;cannot be larger.

If u ¢ Span {1}, the polynomial u;, € V}, corresponding to u € RV¥*! is non-constant,
thus u” Au = a (up,up) > 0. O
2.3 The local basis and matrix
The local (nodal) shape functions within a reference element I = [0, 1] are:

$(x)
¥ (x)

The local basis functions for an element I; are:

1—=z (11a)
2 (11b)

w](k) =W (&), k=01 j=1,.-- N (12)

with the affine transformation which maps I; to [0, 1]:

§i(a) = —2= (13)
h;
The local stiffness matrix K; € RINFDXNFL) g,
K; =diag (0 (o =1 N 14
j = diag (J=1)» 145 1 1 yUN—; ), =1Ly ( )
and the local right-hand-side F}; € R2V—1 ig:
03;1
2)d(z)dx
g | i@ )
f,, Fa)p)(@)da
On_j
With these local components, the global matrix and RHS is
N
A=) K, (16a)
j=1
N
F=)F, (16b)
j=1
and we use point values of uy, as the variable: w = (up(x0),--- ,un(zn)).



2.4 Solving the saddle-point system

Since we used a Lagrange method for the purely Neumann problem, we need to solve

(5 2) ()= () a

the saddle-point system:

where B € RN+ is given by:

0;-
N N j‘ wox
T LIRS of R o3
i=1 =1 U5
On—;

Theorem 1. The saddle-point system above has a unique solution.

Proof. We only need to show that when F' = 0 and ¢ = 0, the above system only admits
zero solution.

When BTu = 0, we have u = B v, where B, € RWVTDXN ig orthogonal to B, of
rank N. Then, solving Au+ AB = F is equivalent to minimizing %UTA’U, —uTF, which
is also to minimize %UTBTABT’U — v BTF. Using the null space of A, we know that
BT AB is symmetric positive definite, thus the system is well-posed. ]

3 Results

We use N = 10, 20, 40, 80 equidistant elements for computation. By running the scripts
in main.m, the outputs from the matlab program we coded are given as following:

N | L? error order H' error order
10 | 7.7742e-04 - 2.7681e-02 -

20 | 1.8839e-04 2.0450 | 1.3151e-02 1.0738
40 | 4.6714e-05 2.0118 | 6.4853e-03 1.0199
80 | 1.1654e-05 2.0030 | 3.2313e-03 1.0051

Table 1: Table of error and order using Gauss-Legendre rule

N | L? error order H' error order
10 | 1.5627e-03 - 4.6907e-02 -

20 | 3.7730e-04 2.0503 | 2.2641e-02 1.0509
40 | 9.3460e-05 2.0133 | 1.1216e-02 1.0134
80 | 2.3311e-05 2.0034 | 5.5946e-03 1.0034

Table 2: Table of error and order using Gauss-Lobatto rule
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55, we choose

Remark 1. In the test, since the exact solution u(x) satisfies fol u(x)dz =
c= % in order to make the error checking procedure easier.
We should emphasize that the value of ¢ will not influence the solution, substituting

¢ with ¢ + Ac will only output u(x) + Ac/m([0,1]) instead of u(x).

4 Discussion

From this experiement, we verified the theoretical 2-nd order convergence under the L2
norm and 1-st order convergence under the H' norm for piecewise quadratic conforming
FEM numerically. In the algorithm, we used the 2-point Gauss-Lobatto quadrature rule
to approximate integration of non-polynomial functions in the right-hand-side. This
does not cause the convergence order to degenerate since the quadrature is 2-th order
accurate.
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