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1 Introduction
Make a program to solve the two-point boundary value problem with purely Neumann
boundary condition: {

−u′′ = f, 0 < x < 1

u′(0) = u′(1) = 0
(1)

Use an equidistant mesh and a piecewise linear polynomial space Vh as the finite
element space. Use f(x) = −12x2 + 12x − 2, u(x) = x2(x − 1)2 to test your program,
and compute the following errors:

∥u− uh∥L2[0,1] , ∥u− uh∥H1[0,1] (2)

2 Method
2.1 The Galerkin approximation
We use the following equidistant mesh:

xj = jh, j = 0, 1, · · · , N, Ij = [xj−1, xj ], hj = xj − xj−1, h = max
j
hj (3)

and we use the following finite element space:

Vh =
{
v ∈ C[0, 1]

∣∣v|Ij ∈ P1(Ij), j = 1, · · · , N
}

(4)

The Galerkin approximation to the problem using approximation space Vh is given
by the following:

find uh ∈ Vh, such that:
∀vh ∈ Vh,

(
u′h, v

′
h

)
= (f, vh) + u′(1)v(1)− u′(0)v(0) = (f, vh)

(5)
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Since the boundary condition is purely Neumann, it is obvious that the solution space is
an affine space. Using the Fredholm theory for second-order elliptic equations, we need
to modify the problem into the following one with an Lagrange multiplier:

find uh ∈ Vh and λ ∈ R such that:

∀vh ∈ Vh,

{
(u′h, v

′
h) + (λ, vh) = (f, vh)

(1, uh) = c

(6)

To approximate integrals of non-polynomial functions in computing the right-
hand-side term f , we apply the 2-point Gauss-Lobatto quadrature rule in both cases.

To approximate integrals of non-polynomial functions in computing the errors,
we apply the 2-point Gauss-Legendre quadrature rule and the 2-point Gauss-Lobatto
quadrature rule respectively.

Here, we give the 2-point Gauss-Legendre quadrature rule and the 3-point Gauss-
Lobatto quadrature rule: ∫ 1

−1
f(x)dx ≈ f(− 1√

3
) + f(

1√
3
) (7)∫ 1

−1
f(x)dx ≈ f(−1) + f(1) (8)

2.2 The global basis and matrix
The global (nodal) basis for the finite element space Vh is given by:

ϕ0(x) =

{
x0−x
h1

, x ∈ I1

0, otherwise
(9a)

ϕj(x) =


x−xj−1

hj
, x ∈ Ij

xj−x
hj+1

, x ∈ Ij+1

0, otherwise
, j = 1, · · · , N − 1 (9b)

ϕN (x) =

{
x−xN−1

hN
, x ∈ IN

0, otherwise
(9c)

Using global basis, each function vh ∈ Vh has the following nodal representation:

vh(x) =
2N−1∑
k=1

vh(x k
2
)ϕk(x) (10)

In this manner, the global stiffness matrix is A =
((
ϕ′i, ϕ

′
j

))
(N+1)×(N+1)

with entries

Ai,j =
(
ϕ′i−1, ϕ

′
j−1

)
, i, j = 1, · · · , N + 1.
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Lemma 1. The matrix A is symmetric and positive semi-definite. The null space of A
is precisely spanned by 1 (the vector with unit entries).

Proof. Since we are using nodal representations, it is straight-forward to check that
A1 = 0. We next show that the null space ;cannot be larger.

If u ̸∈ Span {1}, the polynomial uh ∈ Vh corresponding to u ∈ RN+1 is non-constant,
thus uTAu = a (uh, uh) > 0.

2.3 The local basis and matrix
The local (nodal) shape functions within a reference element I = [0, 1] are:

ψ0(x) = 1− x (11a)
ψ1(x) = x (11b)

The local basis functions for an element Ij are:

ψ
(k)
j = ψ(k)(ξj(x)), k = 0, 1 j = 1, · · · , N (12)

with the affine transformation which maps Ij to [0, 1]:

ξj(x) =
x− xj−1

hj
(13)

The local stiffness matrix Kj ∈ R(N+1)×(N+1) is:

Kj = diag

(
0(j−1), h

−1
j

(
1 −1
−1 1

)
,0N−j

)
, j = 1, · · · , N (14)

and the local right-hand-side Fj ∈ R2N−1 is:

Fj =


0j−1∫

Ij
f(x)ψ0

j (x)dx∫
Ij
f(x)ψ1

j (x)dx

0N−j

 , j = 1, · · · , N (15)

With these local components, the global matrix and RHS is

A =

N∑
j=1

Kj (16a)

F =
N∑
j=1

Fj (16b)

and we use point values of uh as the variable: u = (uh(x0), · · · , uh(xN ))T .
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2.4 Solving the saddle-point system
Since we used a Lagrange method for the purely Neumann problem, we need to solve
the saddle-point system: (

A B
BT 0

)(
u
λ

)
=

(
F
c

)
(17)

where B ∈ RN+1 is given by:

B =

N∑
j=1

Bj =
N∑
j=1


0j−1∫

Ij
ψ0
j (x)dx∫

Ij
ψ1
j (x)dx

0N−j

 (18)

Theorem 1. The saddle-point system above has a unique solution.

Proof. We only need to show that when F = 0 and c = 0, the above system only admits
zero solution.

When BTu = 0, we have u = B⊥v, where B⊥ ∈ R(N+1)×N is orthogonal to B, of
rank N . Then, solving Au+λB = F is equivalent to minimizing 1

2u
TAu−uTF , which

is also to minimize 1
2v

TBTABTv − vTBTF . Using the null space of A, we know that
BTAB is symmetric positive definite, thus the system is well-posed.

3 Results
We use N = 10, 20, 40, 80 equidistant elements for computation. By running the scripts
in main.m, the outputs from the matlab program we coded are given as following:

N L2 error order H1 error order
10 7.7742e-04 - 2.7681e-02 -
20 1.8839e-04 2.0450 1.3151e-02 1.0738
40 4.6714e-05 2.0118 6.4853e-03 1.0199
80 1.1654e-05 2.0030 3.2313e-03 1.0051

Table 1: Table of error and order using Gauss-Legendre rule

N L2 error order H1 error order
10 1.5627e-03 - 4.6907e-02 -
20 3.7730e-04 2.0503 2.2641e-02 1.0509
40 9.3460e-05 2.0133 1.1216e-02 1.0134
80 2.3311e-05 2.0034 5.5946e-03 1.0034

Table 2: Table of error and order using Gauss-Lobatto rule
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Remark 1. In the test, since the exact solution u(x) satisfies
∫ 1
0 u(x)dx = 1

30 , we choose
c = 1

30 in order to make the error checking procedure easier.
We should emphasize that the value of c will not influence the solution, substituting

c with c+∆c will only output u(x) + ∆c/m([0, 1]) instead of u(x).

4 Discussion
From this experiement, we verified the theoretical 2-nd order convergence under the L2

norm and 1-st order convergence under the H1 norm for piecewise quadratic conforming
FEM numerically. In the algorithm, we used the 2-point Gauss-Lobatto quadrature rule
to approximate integration of non-polynomial functions in the right-hand-side. This
does not cause the convergence order to degenerate since the quadrature is 2-th order
accurate.
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