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1 Introduction
Make a program to solve the boundary value problem with purely Dirichlet boundary con-

dition: {
−∆u = f, x ∈ Ω

u
∣∣
Γ
= 0

(1)

Use a triangular mesh and a piecewise linear polynomial space Vh as the finite element
space. Use f(x, y) = 2(1−x) sinx cos y+2(1−y) sin y cosx−2(1−x)(1−y) sinx sin y, u(x, y) =
(x − 1)(y − 1) sinx sin y, Ω = (0, 1)2, Γ = ∂Ω to test the program, and compute the following
errors:

∥u− uh∥L2(Ω) , ∥u− uh∥H1(Ω) (2)

2 Method
2.1 The Galerkin approximation

We use a triangle mesh Th to discretize the computational domain Ωh = Ω, Γh = ∂Ωh (since
Ω is a polygon). Denote h to be the maximal arc-length of the elements as the characteristic
length of the mesh. Define the piecewise-linear finite element space:

Vh =

{
v ∈ H1(Ωh)

∣∣∣∣v∣∣K ∈ P1(K), ∀K ∈ Th, v
∣∣
Γh

= 0

}
(3)

The Galerkin approximation to the problem using approximation space Vh is:

find uh ∈ Vh, such that:
∀vh ∈ Vh,

(
u′h, v

′
h

)
= (f, vh)

(4)

2.2 The reference element
We use the right triangle as the reference element

K̂ =
{
(x, y)

∣∣0 ⩽ x, y ⩽ x+ y ⩽ 1
}

(5)

with vertices P̂1 = (1, 0), P̂2 = (0, 1) and P̂3 = (0, 0). Within this reference element, the
barycentric coordinates are given by (λ1, λ2, λ3) = (x, y, 1− x− y) and the linear nodal bases
are given by:

N̂1(x, y) = λ1(x, y) (6a)
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N̂2(x, y) = λ2(x, y) (6b)
N̂3(x, y) = λ3(x, y) (6c)

Let N̂(x, y) =
(
N̂1(x, y), N̂2(x, y), N̂3(x, y)

)
. The reference mass matrix is

M̂ =

∫
K̂
N̂(x, y)T N̂(x, y)dxdy =

 1
12

1
24

1
24

1
24

1
12

1
24

1
24

1
24

1
12

 (7)

The reference gradient operator (which maps nodal values to gradient values) is

D̂ =

(
1 0 −1
0 1 −1

)
(8)

and the differentiation relations are

∂

∂x
N(x, y) = N(x, y)

1 0 −1
1 0 −1
1 0 −1

 = N(x, y)D̂1 (9a)

∂

∂y
N(x, y) = N(x, y)

0 1 −1
0 1 −1
0 1 −1

 = N(x, y)D̂2 (9b)

The reference stiffness matrix is

Ŝ =

(∫
K̂
∇Ni · ∇Njdσ

)
3×3

= D̂T
x M̂D̂x + D̂T

y M̂D̂y =

 1
2 0 −1

2
0 1

2 −1
2

−1
2 −1

2 1

 (10)

2.3 The local bases and matrices
For an element K = ∆PiPjPk, where Pi = (xi, yi), Pj = (xj , yj) and Pk = (xk, yk), the

Jacobian and the local linear nodal bases are

JK =
∂ (x, y)

∂(λ1, λ2)
=

(
xi − xk xj − xk
yi − yk yj − yk

)
(11a)

Ni(x, y) =
1

2∆K

∣∣∣∣∣∣
1 x y
1 xj yj
1 xk yk

∣∣∣∣∣∣ = λi(x, y) (11b)

Nj(x, y) =
1

2∆K

∣∣∣∣∣∣
1 xi yi
1 x y
1 xk yk

∣∣∣∣∣∣ = λj(x, y) (11c)

Nk(x, y) =
1

2∆K

∣∣∣∣∣∣
1 xi yi
1 xj yj
1 x y

∣∣∣∣∣∣ = λk(x, y) (11d)

where ∆ denotes the signed area of the triangle, which is given by:

∆K =
1

2
det (JK) (12)

Let N(x, y) = (N1, N2, N3). The local mass matrixis:

MK =
∣∣∣ ∂(x,y)
∂(λ1,λ2)

∣∣∣M̂ = det (JK)M̂ (13)
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The local gradient operator (which maps nodal values to gradient values) is:

DK = J−T D̂ =
1

2∆

(
yj − yk xk − xj
yk − yi xi − xk

)T

D̂ =
1

2∆

(
yj − yk yk − yi yi − yj
xk − xj xi − xk xj − xi

)
(14)

and the local differentiation relations are

∂

∂x
N(x, y) = N(x, y)

(
∂λ1

∂x
D̂1 +

∂λ2

∂x
D̂2

)
(15a)

∂

∂y
N(x, y) = N(x, y)

(
∂λ1

∂y
D̂1 +

∂λ2

∂y
D̂2

)
(15b)

The local stiffness matrix is

SK =

∫
K
(∇xN)T ∇xNdx

=

∫
K̂

(
∂(λ1, λ2)

∂(x, y)

T

∇λN̂

)T (
∂(λ1, λ2)

∂(x, y)

T

∇λN̂

)∣∣∣∣ ∂(x, y)

∂(λ1, λ2)

∣∣∣∣ dλ
=

(
∂λ1

∂x
D̂1 +

∂λ2

∂x
D̂2

)T

MK

(
∂λ1

∂x
D̂1 +

∂λ2

∂x
D̂2

)
+

(
∂λ1

∂y
D̂1 +

∂λ2

∂y
D̂2

)T

MK

(
∂λ1

∂y
D̂1 +

∂λ2

∂y
D̂2

)
=
(
D̂T

1 D̂T
2

)((
JT
KJK

)−1 ⊗MK

)(D̂1

D̂2

)

=
(
D̂T

1 D̂T
2

)((
JT
KJK

)−1 ⊗ det (JK)M̂
)(D̂1

D̂2

)

(16)

To approximate integrals of non-polynomial functions, we apply the 3-point quadrature rule:∫
K̂
f(x, y)dσ ≈

∣∣∣K̂∣∣∣ (1

3
f(

1

6
,
1

6
) +

1

3
f(

1

6
,
2

3
) +

1

3
f(

2

3
,
1

6
)

)
(17)

which has 2-order algebraic exactness.

Remark 1. In order to make it easier to assembly the LHS matrix and RHS vector, we do not
exclude boundary nodes from the total DOFs. For each j such that Pj is a boundary node, we
enforce the j-th entry of the RHS vector, the j-th row and column of the LHS matrix (except
the (j, j)-th entry) to be zero, and enforce the (j, j)-th entry of the LHS matrix to be 1. In this
manner, the LHS matrix is kept symmetric positive definite.

3 Results
We use the PDE Toolbox in matlab to generate the meshes in the way of repeatedly refining

the coarsest mesh. By running the scripts in main.m, the outputs from the matlab program we
coded are listed below.

Our initial mesh and corresponding LHS matrix sparsity pattern are shown in the following
figures:
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Figure 1: the coarsest mesh
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Figure 2: sparsity pattern for the coarsest mesh

The errors, meshes and sparsity pattern are shown below:
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triangles interior nodes boundary nodes L2 error order H1 error order
20 5 12 5.1839e-03 - 5.3517e-02 -
80 29 24 1.4646e-03 1.8235 2.8770e-02 0.8954
320 137 48 3.8236e-04 1.9375 1.4707e-02 0.9681
1280 593 96 9.6928e-05 1.9800 7.4036e-03 0.9902

Table 1: Table of error and order
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Figure 3: meshes
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Figure 4: sparsity patterns

4 Discussion
From this experiement, we verified the theoretical 2-nd order convergence under the L2

norm and 1-st order convergence under the H1 norm for piecewise linear conforming FEM
numerically. The numerical convergence orders shown in the table seem to approach 2 and 1
from below, respectively.

We learned from the experiement that in higher dimensions, there are not collocation meth-
ods where the collocation points can serve as high-order quadrature points for exact integration
of inner-products between basis polynomials. In this program, we used the special 3-point
quadrature rule to approximate integration of non-polynomial functions in the right-hand-side.
This does not cause the convergence order to degenerate since the quadrature has algebraic
exactness of order 2. Meanwhile, the unstructure nature of the triangular mesh makes it harder
for us to assemble the left-hand-side matrix, especially in the case of Dirichlet BCs, thus we
need to adapt new strategies to enforce such boundary condition. Last but not least, when
testing FEM programs using unstructured grids, we have to refine the coarse mesh by a factor
of 2 in order to preserve similarity between elements in most of the cases. As a result, the
computational cost could be prohibitive after several refinement and our test numbers might
be limited.
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